A drug test (also often toxicology screen or tox screen) is a technical analysis of a biological specimen, for example urine, hair, blood, breath, sweat, or saliva—to determine the presence or absence of specified parent drugs or their . Major applications of drug testing include detection of the presence of performance enhancing in sport, employers and parole/probation officers screening for drugs prohibited by law (such as cocaine, methamphetamine, and heroin) and police officers testing for the presence and concentration of alcoholic drink (ethanol) in the blood commonly referred to as BAC (blood alcohol content). BAC tests are typically administered via a breathalyzer while urinalysis is used for the vast majority of drug testing in sports and the workplace. Numerous other methods with varying degrees of accuracy, sensitivity (detection threshold/cutoff), and detection periods exist.
A drug test may also refer to a test that provides quantitative chemical analysis of an illegal drug, typically intended to help with responsible drug use.
Oral fluid or saliva testing results for the most part mimic that of blood. The only exceptions are THC (tetrahydrocannabinol) and benzodiazepines. Oral fluid will likely detect THC from ingestion up to a maximum period of 6–12 hours. This continues to cause difficulty in oral fluid detection of THC and benzodiazepines.
Breath air for the most part mimics blood tests as well. Due to the very low levels of substances in the breath air, liquid chromatography—mass spectrometry has to be used to analyze the sample according to a recent publication wherein 12 analytes were investigated.
Rapid oral fluid products are not approved for use in workplace drug testing programs and are not FDA cleared. Using rapid oral fluid drug tests in the workplace is prohibited in only:
The following chart gives approximate detection periods for each substance by test type.
+ Approximate values for detection periods ! Substance !! Urine !! Hair !! Blood / Oral Fluid |
Urine drug tests screen the urine for the presence of a parent drug or its metabolites. The level of drug or its metabolites is not predictive of when the drug was taken or how much the patient used.
Urine drug testing is an immunoassay based on the principle of competitive binding. Drugs which may be present in the urine specimen compete against their respective drug conjugate for binding sites on their specific antibody. During testing, a urine specimen migrates upward by capillary action. A drug, if present in the urine specimen below its cut-off concentration, will not saturate the binding sites of its specific antibody. The antibody will then react with the drug-protein conjugate and a visible colored line will show up in the test line region of the specific drug strip.
A common misconception is that a drug test that is testing for a class of drugs, for example, opioids, will detect all drugs of that class. However, most opioid tests will not reliably detect oxycodone, oxymorphone, meperidine, or fentanyl. Likewise, most benzodiazepine drug tests will not reliably detect lorazepam. However, urine drug screens that test for a specific drug, rather than an entire class, are often available.
When an employer requests a drug test from an employee, or a physician requests a drug test from a patient, the employee or patient is typically instructed to go to a collection site or their home. The urine sample goes through a specified 'chain of custody' to ensure that it is not tampered with or invalidated through lab or employee error. The patient or employee's urine is collected at a remote location in a specially designed secure cup, sealed with tamper-resistant tape, and sent to a testing laboratory to be screened for drugs (typically the Substance Abuse and Mental Health Services Administration 5 panel). The first step at the testing site is to split the urine into two . One aliquot is first screened for drugs using an analyzer that performs immunoassay as the initial screen. To ensure the specimen integrity and to detect possible adulterants, additional parameters are tested for. Some test the properties of normal urine, such as, Creatinine, pH, and specific gravity. Others are intended to catch substances added to the urine to alter the test result, such as, oxidants (including bleach), nitrites, and gluteraldehyde. If the urine screen is positive then another aliquot of the sample is used to confirm the findings by gas chromatography—mass spectrometry (GC-MS) or liquid chromatography - mass spectrometry methodology. If requested by the physician or employer, certain drugs are screened for individually; these are generally drugs part of a chemical class that are, for one of many reasons, considered more habit-forming or of concern. For instance, oxycodone and diamorphine may be tested, both sedative analgesics. If such a test is not requested specifically, the more general test (in the preceding case, the test for opioids) will detect most of the drugs of a class, but the employer or physician will not have the benefit of the identity of the drug.
Employment-related test results are relayed to a medical review office (MRO) where a medical physician reviews the results. If the result of the screen is negative, the MRO informs the employer that the employee has no detectable drug in the urine, typically within 24 hours. However, if the test result of the immunoassay and GC-MS are non-negative and show a concentration level of parent drug or metabolite above the established limit, the MRO contacts the employee to determine if there is any legitimate reason—such as a medical treatment or prescription.
On-site instant drug testing is a more cost-efficient method of effectively detecting substance use amongst employees, as well as in rehabilitation programs to monitor patient progress. These instant tests can be used for both urine and saliva testing. Although the accuracy of such tests varies with the manufacturer, some kits have rates of accuracy correlating closely with laboratory test results.
To get accurate readings on a breath-testing device the individual must blow for approximately 6 seconds and need to contain roughly 1.1 to 1.5 liters of breath. For a breath-test to result accurately and truly an operator must take steps such as avoiding measuring "mouth alcohol" which is a result from regurgitation, belching, or recent intake of an alcoholic beverage. To avoid measuring "mouth alcohol" the operator must not allow the individual that's taking the test to consume any materials for at least fifteen minutes before the breath test. When pulled over for a driving violation if an individual in the United States refuses to take a breath test that individual's driver's license can be suspended for a 6 to 12 months time period.
A 2014 collaborative US study of 359 adults with moderate-risk drug use found, that a large number of participants, who reported drug use in the last 3 months, had negative hair tests. The tests were done using an immunoassay followed by a confirmatory GC-MS. For marijuana, only about half of self-disclosed users had a positive hair test. Under-identification of drug use by hair testing (or over-reporting) was also widespread for cocaine, amphetamines, and opioids. Because such under-identification was more common among participants, who self-reported an infrequent use, the authors suggested, that the immunoassay did not have the sensitivity required for such infrequent uses. It is worth noting, that most earlier studies reported, that hair tests found ca. 50-fold higher prevalence of illicit drug use, than self reports.
In late 2022 the US Federal Motor Carrier Safety Administration denied a petition to recognize hair samples as an alternative (to the currently used urine samples) drug-testing method for truckers. The agency did not comment on the test validity, but rather stated, that it lacks the statutory authority to adopt new analytical methods.
Although some lower courts may have accepted hair test evidence, there is no controlling judicial ruling in either the federal or any state system declaring any type of hair test as reliable.
Hair testing is now recognized in both the UK and US judicial systems. There are guidelines for hair testing that have been published by the Society of Hair Testing (a private company in France) that specify the markers to be tested for and the cutoff concentrations that need to be tested. Addictive substances that can be detected include Cannabis, Cocaine, Amphetamines and drugs new to the UK such as Mephedrone.
However, there is one major difference between most drugs and alcohol metabolites in the way in which they enter into the hair: on the one hand like other drugs FAEEs enter into the hair via the keratinocytes, the cells responsible for hair growth. These cells form the hair in the root and then grow through the skin surface taking any substances with them. On the other hand, the sebaceous glands produce FAEEs in the scalp and these migrate together with the sebum along the hair shaft (Auwärter et al., 2001, Pragst et al., 2004). So these glands lubricate not only the part of the hair that is just growing at 0.3 mm per day on the skin surface, but also the more mature hair growth, providing it with a protective layer of fat.
FAEEs (nanogram = one billionth of a gram) appear in hair in almost one order of magnitude lower than (the relevant order of magnitude of) EtG (picogram = one trillionth of a gram). It has been technically possible to measure FAEEs since 1993, and the first study reporting the detection of EtG in hair was done by Sachs in 1993.
In practice, most hair which is sent for analysis has been cosmetically treated in some way (bleached, permed etc.). It has been proven that FAEEs are not significantly affected by such treatments (Hartwig et al., 2003a). FAEE concentrations in hair from other body sites can be interpreted in a similar fashion as scalp hair (Hartwig et al., 2003b).
There are five primary color-tests reagents used for general screening purposes. The Marquis reagent turns into a variety of colors when in the presence of different substances. Dille-Koppanyi reagent uses two chemical solutions which turns a violet-blue color in the presence of barbiturates. Duquenois-Levine reagent is a series of chemical solutions that turn to the color of purple when the vegetation of marijuana is added. Van Urk reagent turns blue-purple when in the presence of LSD. Scott test's chemical solution shows up as a faint blue for cocaine base.
In recent years, the use of presumptive test kits in the criminal justice system has come under great scrutiny due to the lack to forensic studies, questioned reliability, rendering of false positives with legal substances, and wrongful arrests.
Detection in saliva tests begins almost immediately upon use of the following substances, and lasts for approximately the following times:
A disadvantage of saliva based drug testing is that it is not approved by FDA or SAMHSA for use with DOT / Federal Mandated Drug Testing. Oral fluid is not considered a bio-hazard unless there is visible blood; however, it should be treated with care.
There are also surface drug tests that test for the metabolite of parent drug groups in the residue of drugs left in sweat. An example of a rapid, non-invasive, sweat-based drug test is fingerprint drug screening. This 10 minute fingerprint test is in use by a variety of organisations in the UK and beyond, including within workplaces, drug treatment and family safeguarding services at airport border control (to detect drug mules) and in mortuaries to assist in investigations into cause of death.
Depending on how much marijuana was consumed, it can usually be detected in blood tests within six hours of consumption. After six hours has passed, the concentration of marijuana in the blood decreases significantly. It generally disappears completely within 30 days.
Similar screenings may be used to evaluate the possible use of date rape drugs. This is usually done on a urine sample.
Next, the sample must be made testable. Urine and oral fluid can be used "as is" for some tests, but other tests require the drugs to be extracted from urine. Strands of hair, patches, and blood must be prepared before testing. Hair is washed in order to eliminate second-hand sources of drugs on the surface of the hair, then the keratin is broken down using enzymes. Blood plasma may need to be separated by centrifuge from blood cells prior to testing. Sweat patches are opened and the sweat collection component is removed and soaked in a solvent to dissolve any drugs present.
Laboratory-based drug testing is done in two steps. The first step is the screening test, which is an immunoassay based test applied to all samples. The second step, known as the confirmation test, is usually undertaken by a laboratory using highly specific chromatographic techniques and only applied to samples that test positive during the screening test. "Principles of Drug Testing Technology," Screening tests are usually done by immunoassay (EMIT, ELISA, and RIA are the most common). A "" drug testing method which could provide screening test capabilities to field investigators has been developed at the University of Illinois.
After a suspected positive sample is detected during screening, the sample is tested using a confirmation test. Samples that are negative on the screening test are discarded and reported as negative. The confirmation test in most laboratories (and all SAMHSA certified labs) is performed using mass spectrometry, and is precise but expensive. False positive samples from the screening test will almost always be negative on the confirmation test. Samples testing positive during both screening and confirmation tests are reported as positive to the entity that ordered the test. Most laboratories save positive samples for some period of months or years in the event of a disputed result or lawsuit. For workplace drug testing, a positive result is generally not confirmed without a review by a Medical Review Officer who will normally interview the subject of the drug test.
A number of different analyses (defined as the unknown substance being tested for) are available on Urine Drug Screens.
There are also some disadvantages to spray or sweat testing. There is not much variety in these drug tests, only a limited number of drugs can be detected, prices tend to be higher, and inconclusive results can be produced by variations in sweat production rates in donors. They also have a relatively long specimen collection period and are more vulnerable to contamination than other common forms of testing.
Head hair normally growth at the rate of 0.5 inches per month. Thus, the most common hair sample length of 1.5" from the scalp would detect drug use within the last 90-100 days. 80-120 strands of hair are sufficient for the test.
Most drugs are analysed in hair samples not as the original psychoactive molecules, but rather as their metabolytes. For example, ethanol is determined as ethyl glucuronide, while cocaine use is confirmed using ecgonine. Testing for metabolytes reduces the likelihood of false positive results due to contamination. One disadvantage of hair testing is, that it cannot detect recent drug use, because it takes at least a week after a drug intake for the metabolytes to show up in a growing hair above the skin. Urine tests are better suited for detecting recent (within a week) drug use.
In a practical test, hair sample is usually washed with a low polarity solvent (such as dichloromethane) to remove surface contaminations. Then, the sample is pulverized and extracted with a more polar solvent, such as methanol.
Although thousand different substances can be determined in a single gas chromatography–mass spectrometry or liquid chromatography–mass spectrometry experiment, due to the low concentration of analytes, practical measurements (see selective ion monitoring) are limited to a smaller number (10-20) of analytes. Designer drugs are usually missed in such measurements, because the analyst must know in advance what chemicals to look for.
Most hair testing laboratories use the aforementioned chromato-mass-spectrometry methods for confirmation or for rarely tested drugs only. Mass screening (preliminary or final) is usually done with immunoassays, because of their lower cost.
Psychologist Tony Buon has criticized the use of workplace drug testing on a number of grounds, including:
Tony Buon has also reported by the CIPD as stating that "drug testing captures the stupid—experienced drug users know how to beat the tests".
From a penology standpoint, one purpose of drug testing is to help classify the
people taking the drug test within risk groups so that those who pose more of a danger to the public can be incapacitated through incarceration or other restrictions on liberty. Thus, the drug testing serves a crime control purpose even if there is no expectation of rehabilitating the drug user through treatment, deterring drug use through sanctions, or sending a message that drug use is a deviant behavior that will not be tolerated.
There have been inconsistent evaluation results as to whether continued pretrial drug testing has beneficial effects.
Testing positive can lead to bail not being granted, or if bail has already been granted, to bail revocation or other sanctions. Arizona also adopted a law in 1987 authorizing mandatory drug testing of felony arrestees for the purpose of informing the pretrial release decision, and the District of Columbia has had a similar law since the 1970s. It has been argued that one of the problems with such testing is that there is often not enough time between the arrest and the bail decision to confirm positive results using GC/MS technology. It has also been argued that such testing potentially implicates the Fifth Amendment privilege against self-incrimination, the right to due process (including the prohibition against gathering evidence in a manner that shocks the conscience or constitutes outrageous government conduct), and the prohibition against unreasonable searches and seizures contained in the Fourth Amendment.
According to Henriksson, the anti-drug appeals of the Reagan administration "created an environment in which many employers felt compelled to implement drug testing programs because failure to do so might be perceived as condoning drug use. This fear was easily exploited by aggressive marketing and sales forces, who often overstated the value of testing and painted a bleak picture of the consequences of failing to use the drug testing product or service being offered." On March 10, 1986, the Commission on Organized Crime asked all U.S. companies to test employees for drug use. By 1987, nearly 25% of the Fortune 500 companies used drug tests.
According to an uncontrolled self-report study done by DATIA and Society for Human Resource Management in 2012 (sample of 6,000 randomly selected human resource professionals), human resource professionals reported the following results after implementing a drug testing program: 19% of companies reported a subjective increase in employee productivity, 16% reported a decrease in employee turnover (8% reported an increase), and unspecified percentages reported decreases in absenteeism and improvement of workers' compensation incidence rates.
According to US Chamber of Commerce 70% of all illicit drug users are employed. Some industries have high rates of employee drug use such as construction (12.8%), repair (11.1%), and hospitality (7.9-16.3%).
All organisations—large and small—can benefit from an agreed policy on alcohol and drug misuse that applies to all workers. Such a policy should form part of an organisations overall health and safety management system. PCBUs are encouraged to establish a policy and procedure, in consultation with workers, to constructively manage alcohol and other drug related hazards in their workplace. A comprehensive workplace alcohol and other drug policy should apply to everyone in the workplace and include prevention, education, counselling and rehabilitation arrangements. In addition, the roles and responsibilities of managers and supervisors should be clearly outlined.
All Australian workplace drug testing must comply with Australian standard AS/NZS4308:2008.
In Victoria, roadside saliva tests detect drugs that contain:
In February 2016 a New South Wales magistrate "acquitted a man who tested positive for cannabis". He had been arrested and charged after testing positive during a roadside drug test, despite not having smoked for nine days. He was relying on advice previously given to him by police.
In Victoria, Australia the driver of the car has the option to refuse the drug test. Refusing to undergo a drug test or refusing to undergo a secondary drug test after the first one, triggers an automatic suspension and disqualification for a period of two years and a fine of AUD$1000. The second refusal triggers an automatic suspension and disqualification for a period of four years and an even larger fine.
Optional harm reduction scheme
Occupational harm reduction strategies
Commonly tested substances
Anabolic steroids
Methodologies
Urine drug testing
Spray drug testing
Hair drug testing
Legality, ethics and politics
United Kingdom
United States
Australia
Refusal
Historical cases
See also
External links
|
|